Integrating Global Agricultural Issues into Sustainable Agriculture and Science Education in Kentucky

UK College of Agriculture Team

Dr. Carol Hanley

Mr. Brian Radcliffe

Mr. Kelly Taylor

Dr. Krista Jacobsen

Participating Educators

Tracy Poff – Locust Trace Agri-science Farm Rebecca Russell – Locust Trace Agri-science Farm Cloyce Hinkle – Knox Central High School Lindsey Davie – Henry County High School Christy Eastwood – 4-H Agent Boone County Sheena Thomas – Brown – 4-H Agent Livingston County

Outline

Overview of issues in US agriculture context Undergraduate education

 Teaching approaches, lessons learned, new majors to deal with changing global challenges

P-16 Science and environmental education

 Policy framework, changing standards, assessment and novel teaching strategies

Characteristics of US Agriculture

Characteristics of KY Agriculture

Small (relatively)

Diversified

- By region
- On farms

Transitioning

- Post-tobacco
- New crops vs.
 getting bigger

<u>Highest value crops in Kentucky</u>

- Broiler chickens
- Horses (92% of US sales)
 - Cattle
 - Corn
 - Soybeans (USDA-ERS, 2011)

Challenges to Agricultural Sustainability in US and Kentucky

	United States	Kentucky
Average farm size (hectares)	167	66
Average farmer age (years)	57.1	56.5
Farmers working off- farm (percent)	55%	61%

Largely due to scale and industrialization

Economic

High input costs & small profit margins = need to expand farming operations to remain viable

In Kentucky, transitioning agricultural economy away from tobacco

Environmental

Loss of agricultural biodiversity with expansion of scale, nutrient and pesticide pollution, etc.

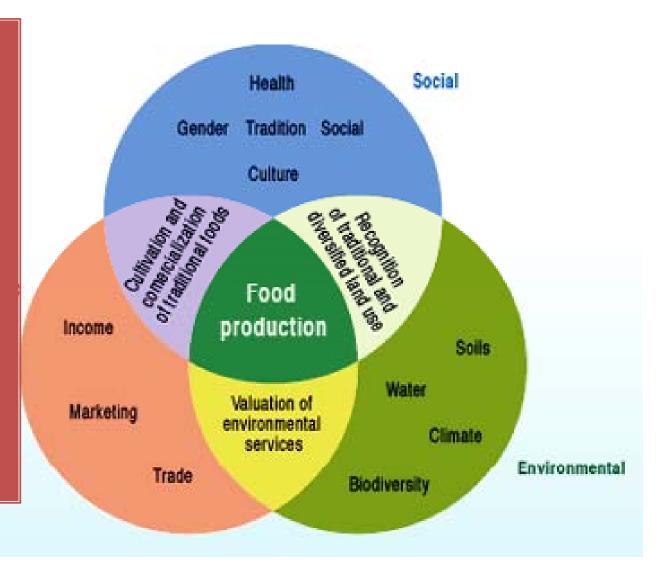
Social

Who will be our next generation of farmers?

How do we define agricultural sustainability?

1990 US "Farm bill" defines sustainable agriculture:

"the term sustainable agriculture means an integrated system of plant and animal production practices having a **site-specific** application that will, over the long term:


- satisfy human food and fiber needs;
- enhance environmental quality and the natural resource base upon which the agricultural economy depends;
- make the most efficient use of nonrenewable resources and on-farm resources and integrate, where appropriate, natural biological cycles and controls;
- sustain the economic viability of farm operations; and
- enhance the quality of life for farmers and society as a whole."

How do we define agricultural sustainability?

Sustainable
Agriculture integrates
economic,
environmental and
social goals.

It is an approach or a goal, and always a "moving target."

Teaching Global Agricultural Issues to Undergraduates at UKy

Global Issues

- Biodiversity
- Climate change
- Food security
- Energy & Biofuels

Approaches and lessons learned through UK Sustainable Agriculture Program & College of Agriculture Coursework

- Overview of issues in US context
- Integration of social and natural science research
- Challenges and lessons learned

Biodiversity Issues in US Agriculture

Loss of habitat

- Percent of land in agriculture has not changed in 150 years
- Habitat loss occurring with removal of conservation measures on farms

Loss of genetics

- 75% of agricultural biodiversity lost in the la century
- Traditional seed saving practices are being abandoned

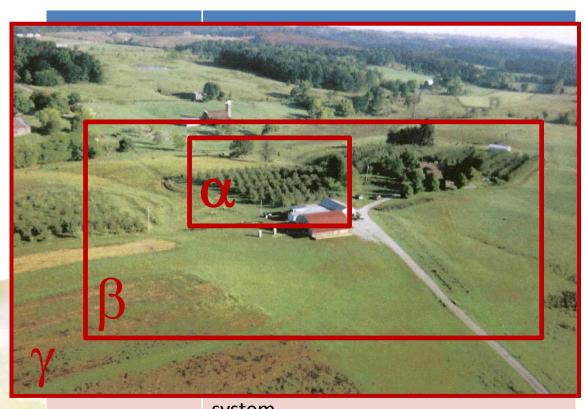
How do we connect our students to this global issue?

- Make it local
- Explore from multiple disciplines and approaches

Teaching Biodiversity

Cultural context for scientific concepts

- In the U.S. more than 7000
 apple varieties were grown in the last century, today 2
 apples count for 50% of the crop, 85% are extinct
- Incorporate local experts



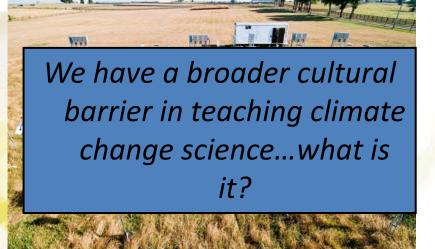
Teaching Biodiversity

Explore scientific concepts in multiple formats

- Quantitative exercises
- Exercises to conceptualize biodiversity in the field

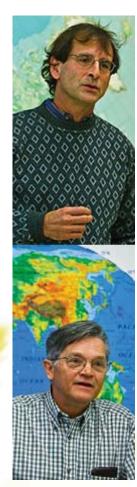
Climate Change & US Agriculture

Agriculture is 6.3% of US greenhouse gas emissions


- CH₄ from cattle and NO_v from fertilizer biggest contributors
- Variety of UK research activities introduced to course work

However...

 US is 2nd only to China in global greenhouse gas



Teaching Climate Change

There is no public consensus on climate change in the US

- Educational efforts are focused on data to support this and critical thinking skills
- Very little focus on mitigation and adaptation in the classroom

Food Security and Hunger

US has a "cheap food" policy

American's spend 10% of income on food

- -18% in 1966
- Lowest in world

Most industrial countries less than 20%, up to >60% in LDC's

What does 1 USD buy a US food consumer?

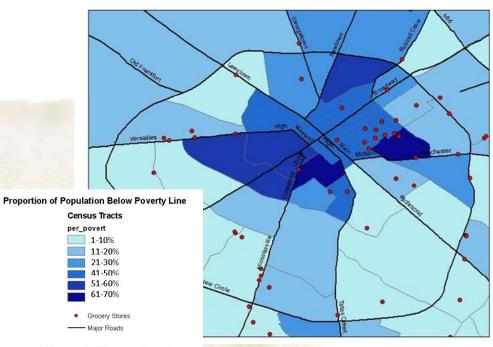
Product

Calories

Hunger is experienced differently in the US; as a lack of nutrition, not a lack of calories. How do we empower students to change this?

American Journal of Clinical Nutrition in Time Magazine

Food Security & Hunger


Engage students in research in Kentucky

Lexington Community Food Assessment

Food "deserts" — an area where healthy, nutritious food is hard to obtain

Service learning
Global context
Study abroad trips
Ex. Ghana
UKAGU

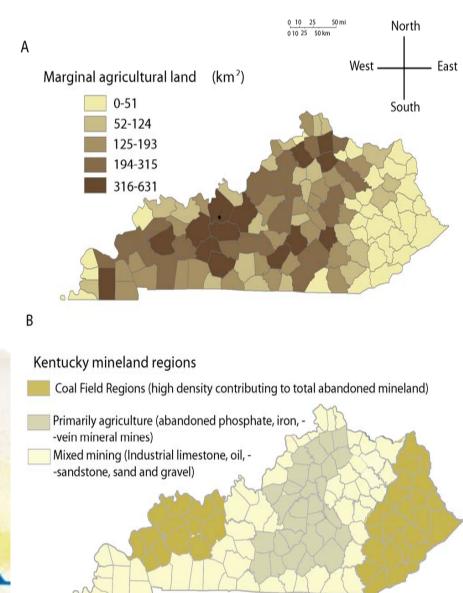
Source: US Census 2000; LFUG Health Depar

Energy Issues

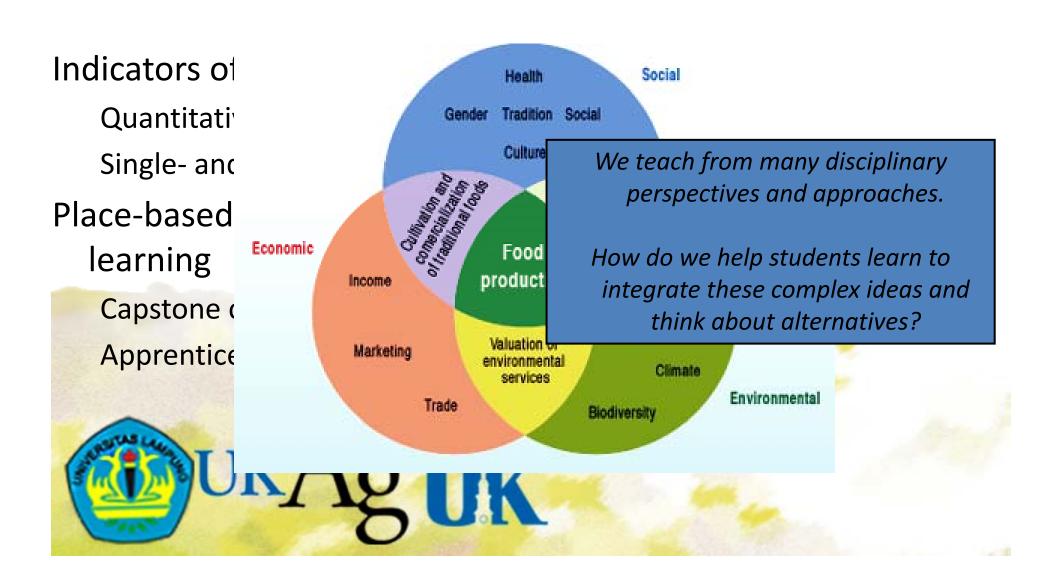
Kentucky has a long, complicated history with energy resources

Teaching about energy use is often controversial...integrating research into teaching helps focus on issues and technologies.

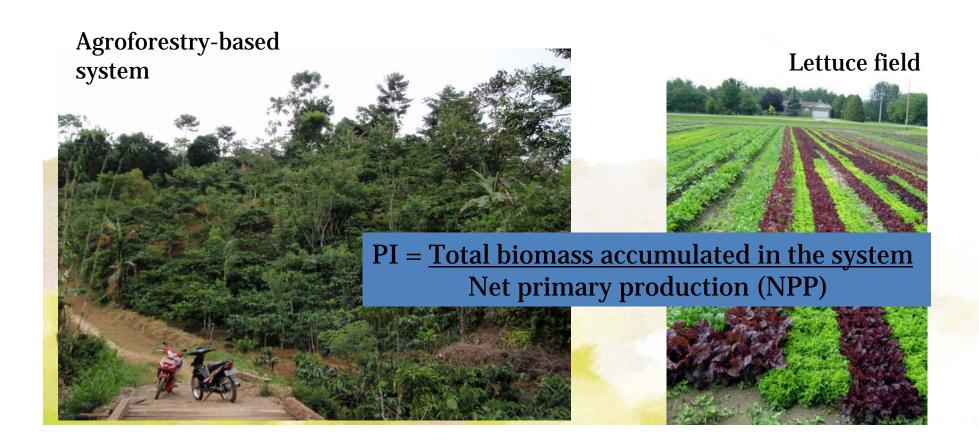
Research in the UK
CoA focuses on
impacts and
alternatives


Teaching Energy Issues

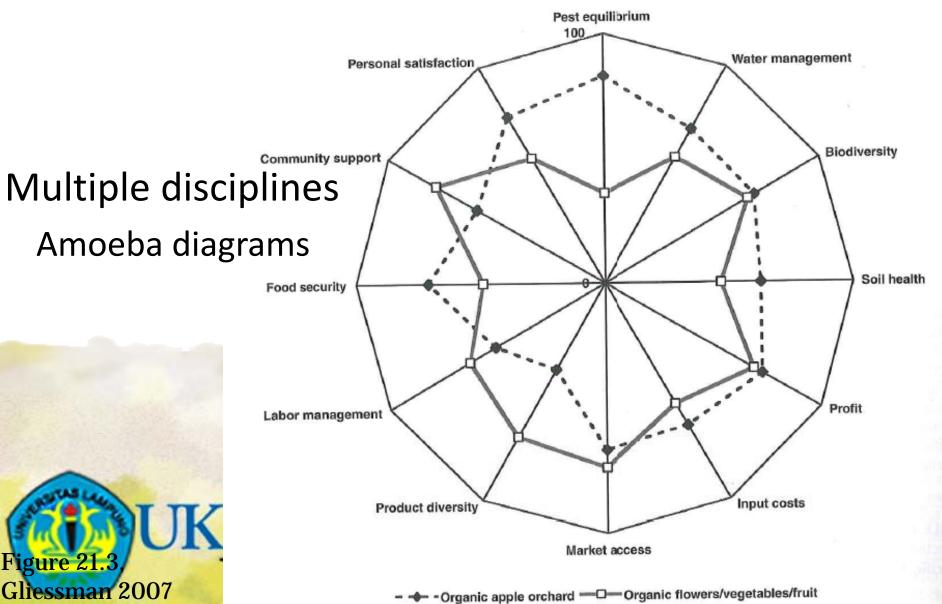
Working with natural cycles to reduce energy use when possible


Alternatives: Biofuels

 Assessing the "footprint" of first generation and second generation biofuels



Teaching Sustainability: integrating complex information



Indicators of Sustainability

Single discipline - Soil quality indices Holistic indicators – productivity index

Indicators of Sustainability

Experiential learning: UK Sustainable Agriculture Program

P – 16 Science and Environmental Education in Kentucky

Dr. Carol Hanley
Mr. Brian Radcliffe
Mr. Kelly Taylor
University of Kentucky
College

Of Agriculture

Senate Bill 1: College and Career Readiness

- A law passed in 2009 to develop one strategy to improve college completion rate across Kentucky.
- It revises the assessment and accountability system for P-12 education in Kentucky and requires a revision of standards based on national and international benchmarks to increase the rigor and focus of P-12 education, increasing the number of students that are college ready.

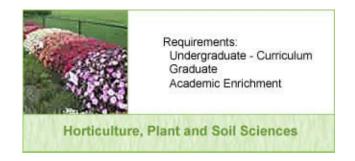
SB 1 Strategies

- Accelerated Learning Opportunities
- Secondary Intervention Programs
- College and Career Readiness Advising
- Postsecondary College Persistence and Degree Completion

What happens at UK?

Learning outcomes at UK should help the smooth transition of Kentucky's recent high school graduates into their first fall semester at UK (see more on this at the Kentucky Council on Postsecondary Education's website on policies regarding Senate Bill 1 and on college readiness); and,

Environmental Programs at UK:College of Agriculture



Environmental Programs at UK:College of Agriculture

Requirements: Undergraduate - Curriculum Graduate Academic Enrichment

Landscape Architecture

Requirements:
Undergraduate - Curriculum
Graduate
Academic Enrichment

Natural Resources and Environmental Science (NRES)

DEPT. COURSE DESCRIPTION CREDITS Minor Prerequisite

- ECO 201 Principles of Economics I 3
- SUB-TOTAL 3

Sustainable Agriculture Core (all courses required)

- SAG 101 Introduction to Susta inable Agriculture 3
- SAG 201 Cultural Perspectives on Sustainability 3
- SAG 397 Apprenticeship in Sustainable Agriculture 3
- SUB-TOTAL 9

TOTAL CREDITS FOR MINOR 21-23

Social Responsibility Cluster (select one)

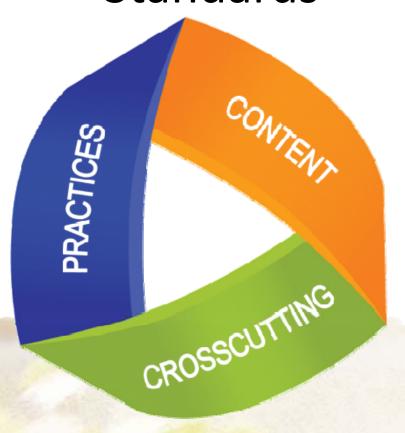
- SOC 360 c Environnemental Sociology 3
- GEN 501 d Agricultural and Environmental Ethics 3

SUB-TOTAL 3

Economic Profitability Cluster (select one)

- AEC 302 b Agricultural Management Principles 4
- AEC 305 b Food and Agricultural Marketing Principles
 3
- AEC 445G b Introduction to Resource and Environmental Economics 3

SUB-TOTAL 3-4



Environmental Stewardship Cluster (select one)

- GEO 210 Pollution Hazards and Environmental Management 3
- GLY 210 Habitable Planet: Earth Systems Evolution 3
- ASC 382 Principles of Livestock Production 3
- PLS 210 The Life Processes of Plants 3
- PLS 366a Fundamentals of Soil Science 4

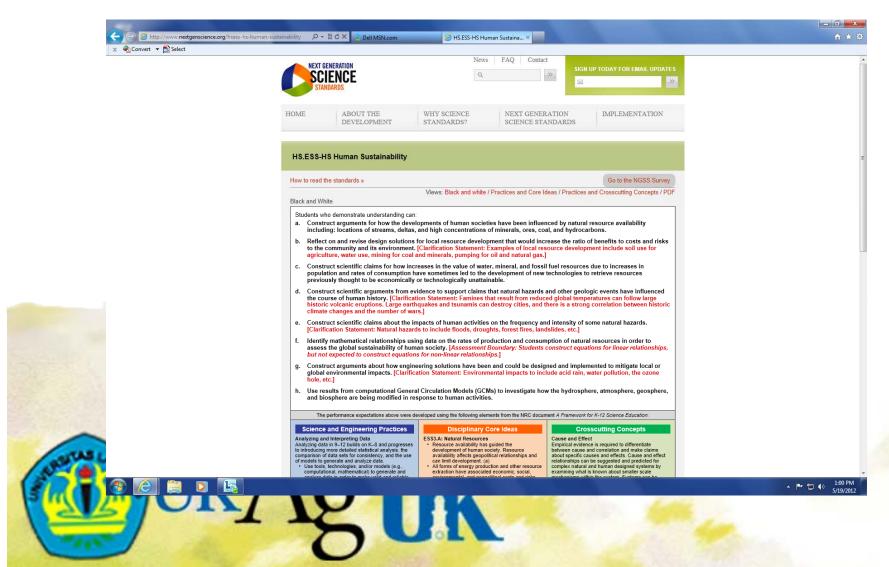
Structure of Next Generation Science Standards

Practices

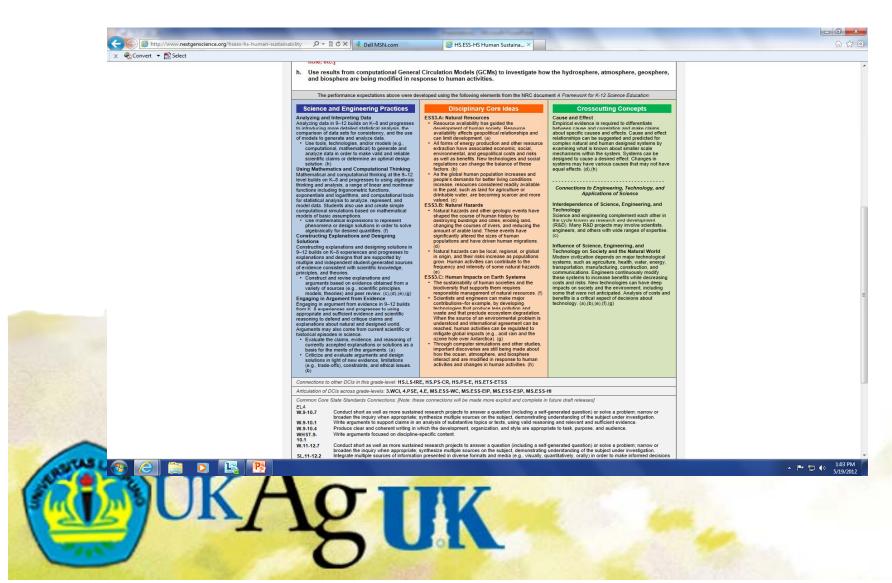
Scientific and engineering practices describe behaviors that scientists engage in as they investigate and build models and theories about the natural world and the key set of engineering practices that engineers use as they design and build models and systems.

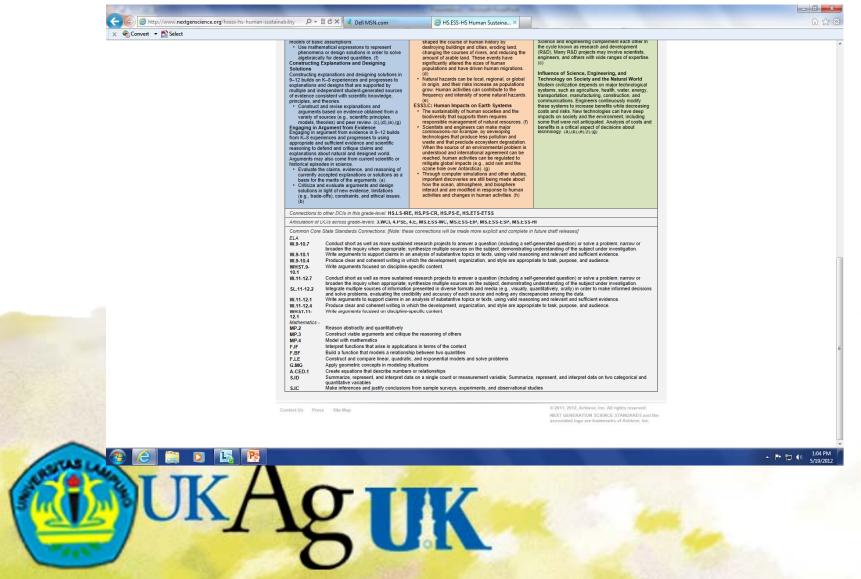
Crosscutting concepts

Crosscutting concepts have application across all domains of science. They are a way of linking the different domains of science. They include: Patterns, similarity, and diversity; Cause and effect; Scale, proportion and quantity; Systems and system models; Energy and matter; Structure and function; Stability and change.



Disciplinary core ideas


Disciplinary ideas are grouped in four domains: the <u>physical sciences</u>; the <u>life sciences</u>; the <u>earth</u> and space sciences; and <u>engineering</u>, technology and applications of science.


Next Generation Standards: Performance Expectations

Next Generation Standards: Foundational Boxes

Next Generation Standards: Connection Boxes

End of Course Exams

- All students must take and End of Course Exam in biology
- It is composed of multiple choice and constructed-response questions
- The content on the test includes: biological processes, biochemistry, cell structure and function, genetics and evolution, animal and plant systems, ecology
- The test counts 20% of a student's grade

Our Work: Project-Based Learning

- Investigating Mare Reproductive Loss Syndrome
- Exploring elk in eastern Kentucky
- Researching Asian clams
- Studying native herbs in Appalachia
- Evaluating pasture at Taylor Made Farm
- Assessing Fayette County Parks
- Evaluating water quality and watershed
- Building and assessing wetlands
- Assessing soils and the loss of farmlands

Workshops

NASA- KY EPSCoRE Sponsored 1 ½ Day Workshop, June 2012, College of Agriculture University of Kentucky, and the Tracey Farmer Institute for Sustainability and the Environment.

"HANDS-ON EXPERIMENT-BASED AND INTERNET-BASED, CLIMATE-CHANGE-SCIENCE INSTRUCTION FOR MIDDLE AND HIGH SCHOOL SCIENCE TEACHERS"

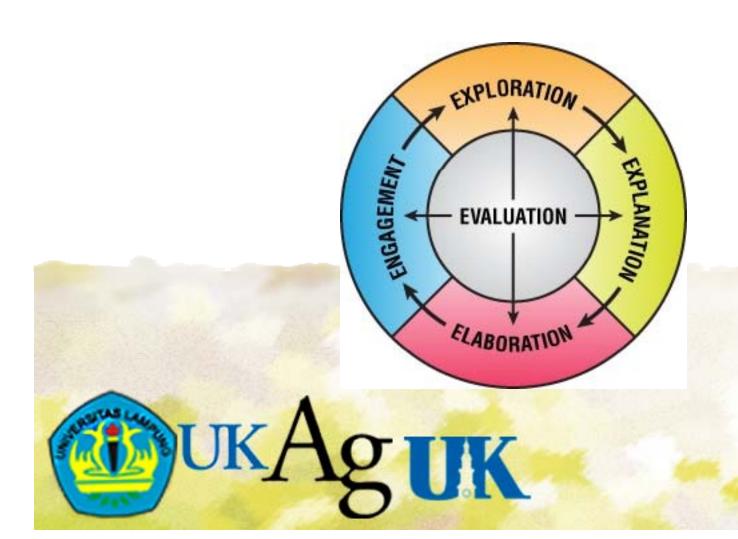
OBJECTIVES:

1: Increase middle and high school teachers' content knowledge of climate change (CC) science.

Climate Change Workshop cont.

2: Prepare middle and high school teachers to conduct simple and inexpensive CC experiments in their class rooms to illustrate key CC science concepts.

3: Prepare middle and high school teachers to teach students about STEM careers related to CC



Climate Change Workshop cont.

4: Enhance middle and high school teacher's ability to critically use the Internet in order to find materials on CC concepts, activities and careers (i.e., NASA web sites, NASA's CORE and ERCN sites).

Pedagogy Matters: A 5-E Learning Cycle

Science in a Box:

Everything you need to teach science

Forces – By Kelly Taylor

Water Quality – By Brian Radcliffe

By special request of Dr. Bujang Rahman

Water: Conductivity

Conductivity Meter.

One of the students can prepare a table to record their data.

Amount of Substance added	0 scoops	First		Fourth Scoop	Sixth Scoop	Seventh Scoop
Conductivity						

Each group of students should have a beaker, a scoop and stirring rod, and the conductivity meter.

Begin by filling the beaker with 200 mL of water. Read and record the conductivity on the table under 0 scoops. This is the control. A control is the set up for the experiment with everything the same except the variable you are testing.

Water: Conductivity

Have students add one scoop of their substance to the beaker and stir. Record the conductivity on the data table.

4. Repeat the procedure by adding one scoop each time until all data has been collected.

After the data are collected, have students describe what they have found. What happened as more of their substance was added to the water? Was the hypothesis supported by the data? Was the change in conductivity equal each time or did it change? Was there a point where conductivity did not change?

Explain: Students should see an increase in conductivity as scoops are added. Explain that the meter measures the ability of water to conduct an electric current. When substances dissolve in water to form ions (particles with a positive or negative charge), the conductivity changes.

Evaluate / Extend: Ask questions to see if students understand conductivity. What causes conductivity in water? What type of substances change the conductivity of water? Where might these substances come from?

The test can be done again with different substances - some will show a larger change in conductivity and some may show little or no change. The idea is to show that many substances can dissolve in water. In natural waters, such as rivers, streams and lakes some of these dissolved sub-

The conductivity meters can be used to measure the conductivity of natural waters. During a rain event different sources of water could be col-

Forces: Friction

same height as before and measure the rolling distance on the new surface. (If the car rolls past the edge of the surface, be sure to add more of the material so that the car remains on the surface until it stops.) [Discuss]: Why are all parts of the system unchanged except the surface for the car to roll on? If the car rolls differently, it must be due to the different surface.

Rollin	g Distan	ce of Toy	Car on Dif	ferent Sur	faces (cm)	l .
Surface material	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Average
Table top	103	87	98	104	99	98.2
Sandpaper (coarse)	45	47	46	48	48	46.8
Sandpaper (fine)	83	89	95	92	82	88.2
Shelf liner material	33	30	31	32.5	31	31.5

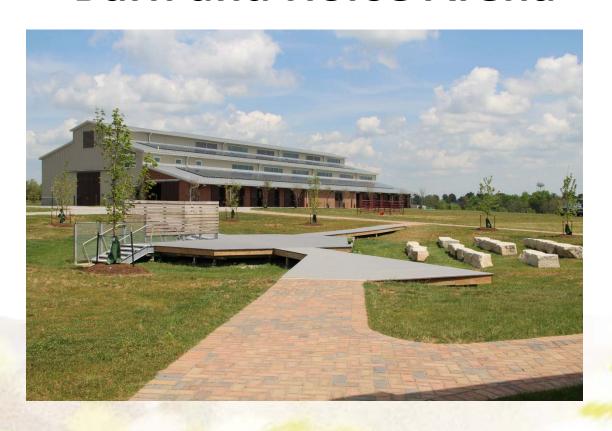
Explain:

- Direct students to complete the data table by calculating the average distance the car traveled on each surface.
- Help them use the data to see which surface allowed the car to travel the farthest distance and which allowed the least distance.
- 3. Ask students why the car went further on some surfaces than they did on others. Help them identify the force of friction as the influence that caused the car to travel differently on each of the surfaces. The force of friction always acts in a direction that is opposite to the direction of motion. If the motion of the car is to the left, then the friction force is acting from the right.
- The toy car produces a force due to its motion, which is commonly referred to as kinetic force or momentum. The interaction of these two forces, kinetic and friction, determines the distance that the car moves.

Forces: Friction

will have as it rolls down the ramp. This is a variable that must be constant in our experiment.

2. Place a toy car at the top end of the track and release it to roll down the track and continue across the surface. [Discuss]: What force is causing the toy car to move down the ramp? Gravity is pulling the car down the ramp. How do we know that the force on the toy car is the same each time we release it? Since the ramp height is not changing, the force of gravity is consistent each time we release the car.


- Measure the distance from the bottom of the ramp to the stopping point to get the rolling distance for the car. Students may measure to the front end or rear end of the car, but this choice must be the same every time.
- 4. Repeat the process of releasing the car and measuring the rolling distance for a total of 5 trials. [Discuss]: Why is it important to release the car without giving it a push? If we provide a pushing force it will change the speed of the car. Why do we use the same car in every trial? Different cars probably do not roll exactly alike. Why is it important to release the car from the same position on the ramp each time? The position on the ramp determines the amount of acceleration due to gravity that is acting on the car and, therefore, the speed and kinetic force of the car at the bottom of the ramp.
- Choose one of the surface materials from the science box and place it at the bottom of the ramp. Release the car from the

Locust Trace Agri-Science Farm

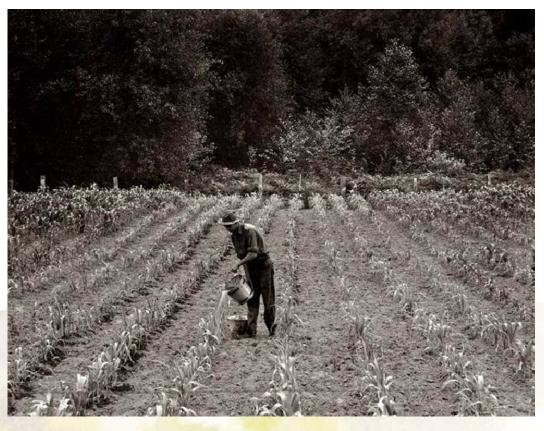
Locust Trace Agri-Science Farm Barn and Horse Arena

Locust Trace Agri-Science Farm Greenhouse

Locust Trace Agri-Science Farm Aquaculture

Locust Trace Agri-Science Farm Getting Ready for Crops

Locust Trace Agri-Science Farm In-School Veterinary Clinic


Henry County, Kentucky

Livingston County, Kentucky

Knox County, Kentucky

Boone County, Kentucky

